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Abstract. We report a neutron scattering study of the instantaneous spin correlations in the two-
dimensional spin S = 5/2 square-lattice Heisenberg antiferromagnet Rb2MnF4. The measured correlation
lengths are quantitatively described, with no adjustable parameters, by high-temperature series expansion
results and by a theory based on the quantum self-consistent harmonic approximation. Conversely, we find
that the data, which cover the range from about 1 to 50 lattice constants, are outside of the regime cor-
responding to renormalized classical behavior of the quantum non-linear σ model. In addition, we observe
a crossover from Heisenberg to Ising critical behavior near the Néel temperature; this crossover is well
described by a mean-field model with no adjustable parameters.

PACS. 75.10.Jm Quantized spin models – 75.25.+z Spin arrangements in magnetically ordered
materials (including neutron and spin-polarized electron studies, synchrotron-source X-ray scattering, etc.)
– 75.30.Gw Magnetic anisotropy

1 Introduction
The physics of the two-dimensional square-lattice quan-
tum Heisenberg antiferromagnet (2DSLQHA) continues
to receive much attention. In addition to the basic in-
terest in studying the role of quantum fluctuations in
this high-symmetry low-dimensional system, experimen-
tal and theoretical efforts have heightened with the dis-
covery that the undoped parent compounds of high-Tc su-
perconductors are typically very good realizations of the
spin S = 1/2 2DSLQHA. In particular, neutron scatter-
ing experiments on the insulating lamellar copper oxides
La2CuO4 [1] and Sr2CuO2Cl2 [2] have elucidated the spin
fluctuations of the 2DSLQHA model for the extreme quan-
tum limit of S = 1/2. The measured spin-spin correla-
tion lengths of Sr2CuO2Cl2 are quantitatively described
[2] by quantum Monte-Carlo results based on the square-
lattice nearest-neighbor Heisenberg model [3,8], and by a
low-temperature theory based on the quantum non-linear
σ model developed by Chakravarty, Halperin, and Nel-
son (CHN) [4]. The remarkable agreement between the
experimental data for S = 1/2 and the theoretical re-
sults of CHN, as extended by Hasenfratz and Niedermayer
(HN) [5], was found not to hold for higher spin values,
S > 1/2. In particular, in the S = 1 2DSLQHA systems
K2NiF4 [2] and La2NiO4 [6], the measured correlation
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lengths were found to deviate significantly from the CHN-
HN prediction. A systematic high-temperature series
expansion study [7] showed that the deviations increase
progressively with increasing spin values above S = 1/2.
Recent Monte-Carlo work [8] suggests that the explana-
tion for this discrepancy may simply be that the series
expansion and neutron scattering results are not in the
asymptotic low-temperature regime for which the CHN-
HN prediction is expected to hold.

For the 2DSLQHA, quantum spin fluctuations strongly
renormalize the spin-stiffness and spin-wave velocity in the
S = 1/2 system Sr2CuO2Cl2, but there appears to be no
fundamental change from classical behavior. For S = 5/2,
the 2DSLQHA should be even less affected by quantum
renormalization and thus should correspond more closely
to a classical spin system. Indeed, high-temperature se-
ries expansion studies reveal a near-agreement between
the correlation lengths of the S = 5/2 2DSLQHA and
the S = 5/2 ferromagnetic system, for which the ground
state is classical [9]. In addition, upon scaling the temper-
ature by JnnS(S+ 1), series expansion results [7] indicate
that the correlation length of the 2DSLQHA rapidly ap-
proaches that of the classical S =∞ case as the spin value
is increased progressively from S = 1/2 to S = 5/2. In or-
der to examine further the role of quantum fluctuations
in the models, and their dependence on the spin quantum
number, one requires more experimental data for the cor-
relation length of systems well described by the 2DSLQHA
Hamiltonian with higher spin.
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We report an energy-integrating neutron scattering
study of the 2D instantaneous spin-spin correlations in
the S = 5/2 material Rb2MnF4. This paper is organized
as follows: Section 2 contains preliminary details about the
Rb2MnF4 system and about our measurements; Section 3
contains our experimental results and data analysis; in
Section 4, we present a comparison with various theories;
and Section 5 summarizes our results.

2 Preliminary details

We study a high-quality single crystal of Rb2MnF4, which
is, in fact, the same as that used in previous neutron stud-
ies [10,11]. Rb2MnF4 has the K2NiF4 crystal structure,
space group I4/mmm, with square planes of MnF2 sep-
arated by two intervening sheets of non-magnetic ions.
The magnetic Mn2+ ions (S = 5/2) form a square lat-
tice and are antiferromagnetically coupled to their nearest
neighbors via super-exchange through the intervening F−

ions. The low-temperature in-plane lattice constants are
a = b = 4.20 Å, and the out-of-plane lattice constant is
c = 13.77 Å. Over the temperature range of the experi-
ment, 10 K ≤ T ≤ 110 K, the in-plane lattice constant
changes by only ∼ 0.1%, so any concomitant temperature
variation of the in-plane exchange coupling will have a neg-
ligible effect on the spin correlations. The exchange cou-
pling between nearest neighbor spins in adjacent planes
is frustrated for this body-centered tetragonal spin struc-
ture. As a result, any effective inter-planar coupling is at
least six orders of magnitude weaker than the coupling
within the planes, leading to the quasi-two-dimensional
nature of the spin system. From previous neutron scatter-
ing experiments on this and isomorphous materials, it is
known that the critical scattering consists of purely two-
dimensional spin fluctuations, and no spin-wave dispersion
is observable along the c-direction, confirming that a 2D
spin model is appropriate [12–14].

The physics of the Mn2+ square lattice is well de-
scribed by the simple spin Hamiltonian

H = Jnn
∑
〈i,j〉

Si · Sj +
∑
i

giµBH
A
i S

z
i , (1)

where the staggered anisotropy field HA
i represents

the effect of the dipolar anisotropy which favors spin
alignment along the c-axis. From both NMR measure-
ments of the sublattice magnetization [15] and neu-
tron scattering measurements of the spin-wave dispersion
[16,17], one obtains Jnn = 7.36± 0.10 K. The small Ising
anisotropy in this predominately Heisenberg Hamiltonian
is αI = gµBH

A/
∑
j=nn JnnSj ' 0.0047, as deduced from

antiferromagnetic resonance and inelastic neutron scat-
tering measurements of the low-temperature spin-wave
gap at the magnetic zone center [15,16]. A small three-
dimensional (3D) coupling does exist as evidenced by
the transition to 3D long-range order which occurs at
TN = 38.4 K. Such a 3D coupling usually appears as a cou-
pling between next-nearest-neighbor (nnn) planes. How-
ever, the weakness of this coupling is evident from mag-
netic Bragg diffraction, which reveals two domains with

different stacking arrangements of ordered MnF2 planes:
one in which nnn planes are ferromagnetically aligned
and another in which nnn planes are antiferromagneti-
cally aligned [10]. This 3D order reflects primarily 2D cor-
relations with Ising critical behavior, since the staggered
magnetization of both stacking domains was found to fol-
low the same power law, Ms = (1 − T/TN)0.16 [10]; the
observed critical exponent β for the order parameter is
much closer to the 2D Ising model value β = 1/8 than to
the conventional 3D values of approximately 1/3.

The experiments were performed on the H4M ther-
mal neutron spectrometer at the Brookhaven High Flux
Beam reactor. The Rb2MnF4 crystal was aligned with a
(11̄0) axis perpendicular to the scattering plane, thus hav-
ing the magnetic zone center wave vector (1/2, 1/2, 0) and
the c-axis in the scattering plane. The spectrometer was
operated in the two-axis energy-integrating configuration
with collimator sequence 20′-20′-sample-20′. The scatter-
ing geometry was chosen so that outgoing neutrons were
perpendicular to the MnF2 planes, thus integrating over
energy at constant in-plane momentum transfer Q2D [13].
In this geometry, the intensity of the detected neutrons is
proportional to the static structure factor,

S(Q2D) '

∫ Ei

−∞
S(Q2D, ω)dω, (2)

where Q2D is the momentum transfer within the 2D MnF2

sheets, and ω is the energy transfer. Here, we assume that
any variation in the Mn2+ form factor has a negligible
effect in the integration over ω. Two incident neutron
energies, Ei = 14.7 meV and Ei = 41 meV, were used
to verify that the experiment integrates over the relevant
dynamic fluctuations properly. Both incident energies are
more than an order of magnitude larger than the magnetic
energy scale, Jnn, in Rb2MnF4. By integrating over all
energies, we obtain information about the instantaneous
(equal-time) spin correlations of the system.

3 Experimental results and analysis

We show in Figures 1 and 2 representative two-axis scans
for Ei = 41 meV and Ei = 14.7 meV, respectively. In
order to extract the intrinsic peak widths and amplitudes
of the scattering, we fit our data to the form

S(q2D) = sin2(φ)
S‖(0)

1 + q2
2D/κ

2
‖

+
(

1 + cos2(φ)
) S⊥(0)

1 + q2
2D/κ

2
⊥

(3)

convolved with the instrumental resolution function
(which is drawn in the top panels of the figures) on top of a
sloping background. Here, q2D = (Qx−1/2, Qy−1/2, 0)
represents the displacement from the center of the rod of
2D scattering measured in reciprocal lattice units, and φ is
the angle subtended by Q and the c-axis. The correlation
length ξ‖,⊥ is the inverse of the Q-space width κ‖,⊥. For
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Fig. 1. Representative energy-integrating scans along the di-
rection (H/2, H/2, L), with L chosen such that kf ‖ c, for an
incident neutron energy of 41 meV. The solid lines result from
least-squares fits of the lineshape, equation (3), convolved with
the instrumental resolution. The dashed line in the top panel
indicates the instrumental resolution.

T >
∼ 1.2 TN , the profiles are well described by a single 2D

Lorentzian form, that is, κ‖ = κ⊥. As the system is cooled
to the immediate vicinity of TN , the scattering exhibits a
crossover from Heisenberg to Ising behavior [14]. Accord-
ingly, we find that within about 20% of TN , for T > TN ,
one must describe the lineshape with two components: one
2D Lorentzian with diverging ξ‖ and S‖(0), corresponding
to the longitudinal (‖ c) Ising fluctuations, and a second
2D Lorentzian corresponding to the non-divergent trans-
verse (⊥ c) spin fluctuations. For our experimental con-
figuration, the geometrical factors sin2(φ) and 1+cos2(φ)
are both close to unity; specifically, for Ei = 14.7 meV,
sin2(φ) ' 0.96 and 1+cos2(φ) ' 1.04. The transverse scat-
tering contribution S⊥(0)/(1 + q2

2D/κ
2
⊥) is denoted by the

dashed line in the bottom two panels of Figure 2.

In our analysis, we first fit the temperature depen-
dence of the transverse scattering at temperatures be-
low TN using a very simple model. Within the ordered
phase, the transverse spin contribution originates from
spin-wave scattering; therefore, κ⊥ is held fixed at the
spin-wave value of κ⊥ = 0.028 reciprocal lattice units,
while the quantity S⊥(0)κ2

⊥ is assumed to increase with

Fig. 2. Representative energy-integrating scans along the di-
rection (H/2, H/2, L), with L chosen such that kf ‖ c, for
an incident neutron energy of 14.7 meV. The solid lines result
from least-squares fits of the lineshape, equation (3), convolved
with the instrumental resolution. The dashed line in the top
panel indicates the instrumental resolution. The dashed lines
in the bottom two panels indicate the magnetic scattering due
to the transverse spin component.

the Bose thermal occupation factor. The Bose factor,
which takes into account both neutron energy gain and
energy loss due to spin-wave excitations, is 2n(ω) + 1
where n(ω) = 1/[exp(ω/T)− 1] and ω = 7.2 ± 0.2 K is
the low-temperature spin-wave gap at the magnetic zone
center [16]. Below TN we also observe a sharp resolution-
limited quasi-2D Bragg component along (1/2, 1/2, L)
which grows in intensity with decreasing temperature.
This 2D Bragg scattering probably originates from 2D
sheets at the interfaces between the two different 3D stack-
ing domains. The 2D Bragg scattering is assumed to have
the same temperature dependence as the 3D order pa-
rameter. This simple model is found to describe the data
below TN very well.

Since the focus of our experiments is on the behavior
above TN , the main impetus for measuring and model-
ing the scattering below TN is to allow us to estimate
the non-critical transverse scattering in the Ising critical
regime above TN . By definition, the transverse scattering
must become identical to the longitudinal scattering in
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Fig. 3. Temperature dependence of κ‖, the width of the longi-
tudinal spin component of the critical scattering. At high tem-
peratures, κ‖ exhibits 2D Heisenberg behavior, crossing over
to 2D Ising behavior near TN . The dash-dotted line represents
the interpolated temperature dependence of κ⊥. The solid line
is the PQSCHA result [18] modified to include the effects of
the Ising anisotropy, and the dashed line is the prediction from
series expansion for the S = 5/2 2DSLQHA [7]. The plotted
curves have no adjustable parameters

the Heisenberg regime well above TN . Therefore, in the
fitting, we assume that for the transverse component, κ⊥
and S⊥(0)κ2

⊥ can be simply interpolated linearly between
the fitted values at TN = 38.4 K and those at 46 K, and
that above 46 K the two Lorentzians are identical, that is,
within the errors the system shows pure Heisenberg be-
havior. Thus, in the final data analysis above TN , the only
free fit parameters are κ‖ and S‖(0), which describe the
Heisenberg behavior at high-temperatures and the Ising
critical scattering for temperatures near TN . The results
are shown in Figures 3 and 4. For the fitted values of
κ‖ shown in Figure 3, the plotted error bars correspond
to the larger of three statistical standard deviations or
one-tenth of the instrumental resolution. Similarly, for the
S‖(0) data shown in Figure 4, the plotted error bars are
equal to three standard deviations. We note that the data
obtained with Ei = 14.7 meV and Ei = 41 meV agree
well with each other, thus confirming the validity of the
quasi-elastic approximation [13]. The dash-dotted lines
represent the interpolated temperature dependences of the
transverse scattering parameters. We find that varying the
upper temperature limit of the interpolation of the trans-
verse fluctuations around 46 K by several degrees does
not change the results for κ‖ and S‖(0) within the errors.
Furthermore, we also obtain closely similar results using
a very different interpolation scheme for κ⊥ and S⊥(0)κ2

⊥
similar to that employed in reference [14]. The solid curve
in Figure 3 corresponds to a theory for the 2DSLQHA
by Cuccoli et al. [18], which we plot with a modification
incorporating the effects of the Ising anisotropy. We will
elaborate upon this in the next Section. The dashed line

Fig. 4. Temperature dependence of S‖(0), the peak intensity of
the longitudinal critical scattering. The dash-dotted line repre-
sents the interpolated temperature dependence of S⊥(0). The
solid line is the PQSCHA result [18], and the dashed line is the
prediction from series expansion for the S = 5/2 2DSLQHA
[7]. Since the neutron scattering intensity is not measured in
absolute units, the data are scaled to approach optimally the
limit S‖(0)→ S(S + 1)/3 as T →∞.

in Figure 3 is the prediction from high-temperature se-
ries expansion for the Heisenberg model with S = 5/2 [7].
In Figure 4, the solid line is the unmodified result from
reference [18], and the dashed line is the series expansion
result for the S = 5/2 2DSLQHA [7]. Since the neutron
scattering intensity is not measured in absolute units, we
choose a scale for the plot of S‖(0) in Figure 4 such that
the data approach optimally the limit S‖(0)→ S(S+1)/3
as T →∞.

Previous studies [14] of the 2D antiferromagnets
K2NiF4 (S = 1) and K2MnF4 (S = 5/2) show that within
∼ 20% of TN the critical magnetic scattering follows the
behavior predicted for the 2D Ising model, for which the
exact exponents are ν=1 for the correlation length and
γ=1.75 for the susceptibility. Our main purpose here is
to study the 2D Heisenberg regime, so the instrumental
resolution was not optimized to investigate the narrow,
rapidly diverging peaks in the Ising critical regime. Even
so, our fitted values for κ‖ at temperatures within 20% of
TN yield an exponent of ν = 1.0± 0.1 in good agreement
with the exact result ν = 1 for the 2D Ising model.

4 Comparison with theory

A low-temperature theory for the 2DSLQHA was for-
mulated by Chakravarty, Halperin, and Nelson, in which
they obtained the static and dynamic properties of the
2DSLQHA by mapping it onto the 2D quantum non-
linear σ model [4]. The 2D quantum non-linear σ model
is the simplest continuum model which reproduces the
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correct spin-wave spectrum and spin-wave interactions
of the 2DSLQHA at long wavelengths and low energies
[4,19]. First, CHN argued that the 2DSLQHA corresponds
to the region of the 2D quantum non-linear σ model in
which the ground state is ordered – the renormalized clas-
sical regime. Then, CHN used perturbative renormaliza-
tion group arguments to derive an expression for the cor-
relation length to two-loop order, showing a leading expo-
nential divergence of ξ versus inverse temperature. Later,
Hasenfratz and Niedermayer employed chiral perturbation
theory to calculate the correlation length more precisely to
three-loop order [5]. In the renormalized classical scaling
regime, the correlation length is given by [5]

ξ

a
=
e

8

c/a

2πρs
e2πρs/T

[
1−

1

2

(
T

2πρs

)
+O

(
T

2πρs

)2
]
,

(4)

which we refer to as the CHN-HN formula. The parame-
ters ρs and c are the macroscopic spin-stiffness and spin-
wave velocity of the model, respectively. For the nearest-
neighbor 2DSLQHA, they are related to the microscopic
parameters Jnn, S and the lattice constant a according
to ρs = Zρ(S)S2Jnn and c = Zc(S)2

√
2aSJnn. The co-

efficients Zρ(S) and Zc(S) are quantum renormalization
factors, which can be calculated using spin-wave theory
(S ≥ 1/2), series expansion (S = 1/2, 1), and Monte-
Carlo techniques (S = 1/2) [8,17,20]. For S = 1/2,
the spin-wave approximation [17] gives Zρ(1/2) ' 0.699
and Zc(1/2) ' 1.18, whereas for S = 5/2, the factors
Zρ(5/2) ' 0.951 and Zc(5/2) ' 1.03 are closer to the
classical limit of Zρ = Zc = 1.

As mentioned above, the correlation length of the
S = 1/2 system Sr2CuO2Cl2 is well described by equa-
tion (4) throughout the entire experimental temperature
range. Subsequent Monte-Carlo work [8] indicates that
this agreement for the S = 1/2 case is, at least in part, co-
incidental; deviations exist, but they are too subtle to be
discerned experimentally. In CHN-HN’s formulation, the
natural expansion parameter for temperature is T/2πρs.
For all experimental systems, the lowest temperature at
which 2D Heisenberg behavior can be observed is bounded
by a non-zero temperature TN below which there is 3D
long-range order. For the S = 1/2 system Sr2CuO2Cl2,
the measured experimental temperature range is 0.16 <
T/2πρs < 0.36 [2]. In our present study of Rb2MnF4,
which has a higher spin, though smaller Jnn, the temper-
ature range is similar, 0.14 < T/2πρs < 0.40. The Monte-
Carlo simulations of Beard et al. [8] for S = 1/2 indicate
that the three-loop CHN-HN formula, equation (4), pro-
vides an accurate description of the S = 1/2 2DSLQHA
for temperatures T/2πρs <

∼ 0.15. This barely overlaps the
temperature range studied experimentally here. Further,
for S = 5/2 the renormalized classical scaling regime is
expected for lower temperatures [7].

In Figure 5, we plot our results for the correlation
length versus inverse temperature. Since Jnn is known
from independent experiments [15,16], there are no ad-
justable parameters in the comparison between theory and

Fig. 5. The longitudinal correlation length ξ‖ = 1/κ‖ ver-
sus inverse temperature in reduced units. The open symbols
are our data for Rb2MnF4. The closed circles are results for
KFeF4 from reference [21]. The dashed line is the PQSCHA
[18] results modified to include the Ising anisotropy. The dash-
dotted line is the unmodified PQSCHA result. The solid line
is the result of series expansion for the S = 5/2 2DSLQHA
[7]. The dotted line is the three-loop CHN-HN formula, equa-
tion (4) [4,5]. The comparisons are in absolute units, with no
adjustable parameters.

experiment. Also plotted in Figure 5 are the experimental
data from Fulton et al. [21] for the 2D S = 5/2 Heisen-
berg antiferromagnet KFeF4. The KFeF4 system is less
ideal because the nearest neighbor spins in the planes are
distorted from a square configuration forming a rectan-
gular lattice. However, using the average of the magnetic
exchange coupling along the two different in-plane lattice
directions (Javgnn ' 26.9 K from neutron scattering mea-
surements of the spin-wave dispersion [21] with zero point
correction [17]), we find that the agreement for the mea-
sured correlation lengths between Rb2MnF4 and KFeF4

is excellent. The reduced Ising anisotropy for KFeF4 of
αI ' 0.0045 is fortuitously almost identical to that for
Rb2MnF4. The three-loop CHN-HN formula is plotted
for S = 5/2, and it appears as a straight line on this
logarithmic scale. We used the spin-wave theory values of
ρs ' 5.94J and c ' 7.30Ja [17]. It is evident that the data
deviate significantly from the three-loop CHN-HN result
for the quantum non-linear σ model.

Figure 5 also includes the series expansion result for
the S = 5/2 2DSLQHA from reference [7]. There is good
agreement between the series expansion prediction, with
plotted correlation lengths up to 14 lattice constants, and
our data over most of the temperature range. Systematic
deviations exist at very high temperatures, where the cor-
relation length is small, and at low temperatures near TN ,
where the correlation length begins to diverge rapidly.
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At high temperatures, where the correlation length de-
creases to one lattice constant or less, ξ is not precisely
defined. Also, at such high temperatures where the mea-
sured peaks become broad in reciprocal space, the use of
an Ornstein-Zernike Lorentzian lineshape may be called
into question, and the background is more difficult to de-
fine. Accordingly, it is not surprising that slight deviations
exist at high temperatures. We have already pointed out
that Ising fluctuations will dominate near TN , so the cor-
relation length will necessarily deviate from Heisenberg
behavior in the immediate vicinity of TN .

An alternative theoretical analysis of the 2DSLQHA
has been carried out by Cuccoli et al. [18] in which they
treat quantum fluctuations in a self-consistent Gaussian
approximation separately from the classical contribution.
In their approach, which they label the purely-quantum
self-consistent harmonic approximation (PQSCHA), the
quantum spin Hamiltonian is rewritten as an effective clas-
sical Hamiltonian, where the temperature scale is renor-
malized due to quantum fluctuations, and the new classi-
cal spin length appears as S + 1/2. Defining the reduced
temperature as t = T/{Jnn(S + 1/2)2}, the correlation
length for the 2DSLQHA is then simply given by

ξ(t) = ξcl(tcl) with tcl =
t

θ4(t)
· (5)

Here, ξcl is the correlation length for the corresponding
classical 2D square-lattice Heisenberg model, and θ4(t) is
a temperature renormalization parameter. The PQSCHA
is most accurate in the limit where the quantum fluctu-
ations are weak, and correspondingly θ4(t) is near unity.
The calculations of Cuccoli et al. [18] show that this is
the case for S = 5/2 over an extended temperature range;
further, their results show good agreement with the ex-
isting experimental S = 1/2 and S = 1 data over the
appropriate high-temperature ranges. The behavior of ξcl
is determined from classical Monte-Carlo simulations. The
PQSCHA result for S = 5/2 is plotted in Figure 5 as the
dash-dotted line. Similar to the series expansion result,
there is good agreement between the PQSCHA theory and
our data and those in KFeF4 with no adjustable param-
eters. Again, as TN is approached, the data deviate from
the theoretical curve because of the crossover to Ising be-
havior.

Keimer et al. [1] have derived a simple mean-field
model which allows one to incorporate the effects on
the longitudinal spin correlations of the staggered Ising
anisotropy field as appears in equation (1). In this model,
the unperturbed Heisenberg correlation length is replaced
by the form

ξ(αI , T ) =
ξHeis(T )√

1− αIξ2
Heis(T )

· (6)

Using the value αI=0.0047 measured in Rb2MnF4 and the
form for ξHeis(T ) given by the PQSCHA for the Heisen-
berg model, we obtain the dashed line shown in Fig-
ure 5. This mean-field result for the correlation length
nicely captures the crossover from Heisenberg to Ising

spin correlations in both Rb2MnF4 and KFeF4. By de-
sign, this model takes into account the growing impor-
tance of the local anisotropy field as the spin correlation
length grows; it does not include 2D Ising critical effects.
Thus, the predicted divergence is mean-field-like with a
power-law exponent of ν=1/2 instead of the 2D Ising re-
sult of ν=1. This rapid mean-field divergence is also ele-
gantly seen as the “PQSCHA-with-anisotropy” curve rises
above our data very close to TN . Nevertheless, this mean-
field model with no adjustable parameters predicts TN
to within 3% in Rb2MnF4 and to within 6% in KFeF4.
The accuracy of this model is highlighted when com-
pared to the conventional mean-field theory prediction of
TN = 4JnnS(S + 1)/3 which is higher than the experi-
mentally measured transition temperatures by more than
a factor of two.

In Figure 6 we plot the ratio S‖(0)/ξ2
‖ versus tem-

perature for Rb2MnF4. The open symbols indicate data
for which the Ising critical fluctuations become signifi-
cant, so we concentrate here on the closed symbols in the
temperature regime where the behavior is predominantly
Heisenberg-like. The low-temperature analysis of CHN-
HN predicts that this quantity should follow the form

S(0)

ξ2
= A2πM2

s

(
T

2πρs

)2
[

1 + C
T

2πρs
+O

(
T

2πρs

)2
]
,

(7)

whereMs is the T = 0 staggered magnetization and A and
C are universal constants. The same form, which is writ-
ten above at three-loop order, can also be derived from
a renormalization group analysis of the classical model
[9,22]. In an alternative approach, Kopietz [24] obtained
the leading T 2 behavior based on a Schwinger boson mean-
field theory [23]. Using the values for the universal num-
bers A and C in equation (7) obtained from Monte-Carlo
calculations on the S = 1/2 and S = 1 models (A = 4.5
and C = 0.5) [25,26], we plot equation (7) in Figure 6.
It appears that the low-temperature data points in the
Heisenberg regime may overlap with the T 2 law; however,
the data depart significantly from the predicted T 2 law
at higher temperature. Since the overall scaling factor for
the S‖(0) data was determined in Figure 4, there are no
adjustable parameters in this plot. Also plotted are results
from series expansion [7] and the PQSCHA theory [18] for
the S = 5/2 2DSLQHA. There is a rough overall agree-
ment with both of these latter results, but systematic de-
viations clearly exist.

5 Summary

In summary, we find that the instantaneous spin-spin
correlations in Rb2MnF4 are quantitatively described
by high-temperature series expansion results and the
PQSCHA theory for the S = 5/2 2DSLQHA with no ad-
justable parameters. There is also good absolute agree-
ment with previous results for KFeF4, which is a some-
what less ideal S = 5/2 2DSLQHA. Our data, which
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Fig. 6. The ratio S‖(0)/ξ2
‖ versus temperature. The dashed

line is the PQSCHA result [18]. The dash-dotted line is the
prediction from series expansion for the S = 5/2 2DSLQHA [7].
The solid line is equation (7) with the parameters A and C
obtained from [26].

correspond to correlation lengths up to about 50 lattice
constants, are not well described by the three-loop CHN-
HN prediction based on the 2D quantum non-linear σ
model. This discrepancy almost certainly derives from the
fact that the experimental data correspond to tempera-
tures where the S = 5/2 2DSLQHA is not in the renor-
malized classical low-temperature regime described by
equation (4), but rather in the classical scaling regime [9].
Arguments by Elstner et al. [7], based on CHN’s use of
cutoff wavevectors for integrations over the Brillioun zone,
give a crossover temperature Tcr ∼ JnnS between renor-
malized classical behavior at low-temperature and classi-
cal scaling behavior at high-temperature. For Rb2MnF4,
Tcr ∼ 18.4 K, which suggests that the experimental
data lie in the classical scaling regime. In addition, the
PQSCHA theory predicts the correlation length accu-
rately in absolute units for this material, which is con-
sistent with the statement that quantum fluctuations are
not large and the system is in the classical scaling regime
in the temperature range measured.

As of yet, no quantum Monte-Carlo results exist for the
S = 5/2 2DSLQHA. In Monte-Carlo work for S = 1/2
[8,25] it was found that ξ deviates somewhat from the
three-loop CHN-HN result for correlation lengths less than
∼ 1000 lattice constants. However, results for the ratio
S(0)/ξ2 [25] with fitted universal constants show quanti-
tative agreement with the T 2 law of equation (7) over the
complete temperature range. Recent Monte-Carlo work
for S = 1 [26] shows that for correlation lengths of less
than 25 lattice constants, ξ is not well described by the
three-loop CHN-HN low-temperature formula. However,
the S = 1 Monte-Carlo data match well both the results
from the PQSCHA theory for S = 1 and the experimen-
tal data for La2NiO4. Also, the leading T 2 behavior for

S(0)/ξ2 is followed by the Monte-Carlo data for S = 1.
This is in contrast with our results for Rb2MnF4 where we
find a significant departure from the leading T 2 behavior
for S(0)/ξ2 at high temperatures or, equivalently, short
correlation lengths.

Finally, we note that the 2D Heisenberg-Ising crossover
behavior in both Rb2MnF4 and KFeF4 is predicted rea-
sonably well by equation (6) without any adjustable pa-
rameters. However, since equation (6) is a mean-field re-
sult it cannot account for the asymptotic 2D Ising critical
behavior.

In conclusion, we now have a quite complete under-
standing of the spin correlation length in the S = 5/2 2D
Heisenberg antiferromagnet for the experimentally rele-
vant temperature range. Further work is required to un-
derstand the static structure factor peak intensity S(0) to
the same degree.
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